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The asymptotic density profile of classical simple fluids in contact with a hard 
wall is studied using the hypernetted chain approximation for inhomogeneous 
systems. It is shown that the one-particle distribution function tends very slowly 
to the density of the bulk, also in absence of a long-range wall-particle interac- 
tion, when the pair interaction between particles in the bulk varies as an inverse 
power at large distances. 
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1. I N T R O D U C T I O N  

The asymptotic behavior of the correlation functions of homogeneous 
fluids near the triple point has been extensively investigated in the 
literature. (14) So far much less information is available in the case of 
inhomogeneous fluids. 

In this paper we investigate the asymptotic behavior of the density 
profile p(z) of a classical simple fluid against a hard wall using the hyper- 
netted chain approximation (HNC). Notwithstanding the absence of a 
long-range interaction between the wall and the particles, the density 
profile of an inverse-power-law fluid tends very slowly to the density of the 
bulk. 

In Section 2 we derive the HNC results for the asymptotic density 
profile in the case of inverse power fluids; in Section 3 we show the 
modifications necessary to deal with the long-range Coulomb potential and 
comparison is made with the gradient expansion approach. 
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2. INVERSE POWER FLUIDS 

The HNC equation for the one-particle density p(z) of a fluid against 
a hard wall without wall-particle interaction is (5) 

log p(z) = Pb f dr' Cb(Ir-- r'l) h(z') (1) 
P b  J 

where z is the vertical distance from the surface, Pb is the bulk density, 
h(z)-[p(z)--pb]/Pb , Cb(r ) is the direct correlation function of the 
homogeneous fluid and the integration is over the whole space. 

We assume that, for classical liquids where the long-range interaction 
may be written as u(r),..A/r ~, the direct correlation function cb(r) tends 
asymptotically to -f lA/t  "~ plus faster decaying terms (fl = 1/kT). Note that 
this is an exact statement in the HNC theory of the bulk. 

Let us consider a z so large that z/2 is also well inside the asymptotic 
region both for h(z) and cb(z). 

Using cylindrical coordinates Eq. (1) can be written 

log[1 + h(z)] 

= --27Zpb dz' SCb(S ) ds + 27~pb dz' h(z') SCb(S) ds 
--o0 --g' "10 --Z' 

+ 2~pb d f  h(z' scb(s ) ds + 2~Zpb dz' h(z') scb(s) ds 
z z z z /2 . - " - ' 

(2) 

where we have used the hard wall condition 

h(z)= - 1  for z<O 

Every term on the right-hand side of Eq. (2) contains either h(z) or 
Cb(S) integrated in the asymptotic region. Substituting - f iA / s  n for cb(s) 
where s > z/2 we get 

2nflApa 27rfi_Ap_b ~/2 dz' h(z') 
l ~  ( n - 2 )  Jo ( z - z ' )  "-2 

f z/2 f f  + s 
+ 27Zpb S C b ( S )  d s  d z '  h(z') 

v O  - - S  /, 

c ~ ds ;+~dz ,  h(z,) (3) 
- -  2 ~ f l A p b  J~/2 ~ /2 



Asymptotic Density Profile of a Classical Fluid Against a Hard Wall 863 

Furthermore, in the asymptotic region logl-1 + h(z)] ~ h ( z )  so the density 
profile should decay as 1/z ~- 3 unless one of the remaining integrals on the 
right-hand side of (3) suppresses this behavior. 

We can exclude this case under the very weak assumption that M / z  ~ 
would be an upper bound for Ih(z)] for z > 0  ( M > 0 ;  0 < ~ <  1). Indeed 

i0z,2 as M [zj2 dz' ~ M' 
( z - z ' )  " -~  ,o z ' ~ ( z - z ' ) " - ~ - z  "-~+~ 

(4) 

and this term goes to zero faster than the 1/z n-  3 term. 
The asymptotic behavior of the remaining two integrals depends on 

that of h(z) and Eq. (3) must be satisfied in a consistent way. While it is 
not possible to do this with an exponential decaying density profile, if we 
put (1) 

h(z)= )--~+o ~ ( m ~ > n - 3 )  

we have at the lowest order 

H 2~flApb l 4 ~ p b H i ~ s 2 c a ( s )  d s + o ( z l _ 3 )  (5) 
z- - -~=(n--2) (n- -3)z  " -3  ~- z m Jo 

which requires 

m = n - 3 and H = 
2rcAp~xr 

(n - 2)(n - 3) 

where Xr is the isothermal compressibility and we have used the Ornstein- 
Zernike relation: 1 - Pb ~ dr ca(r) = B/PbZT. 

For the physically relevant case of a Lennard-Jones fluid Eq. (5) 
implies that the density profile tends to the bulk value as slowly as l / z  3. We 
also note that for n < 4  the adsorption per unit surface area ~ h(z )dz  
diverges. 

The asymptotic behavior of the wall-particle direct correlation 
function c(z) defined by the relation 

h(z) = c(z) + Pa f ca(Jr - r'[) h(z') dr' (6) 

can be obtained at once using the formula (1) and expanding the 
log(1 + h). It follows that 

c(z) = h~(z)/2 + O(h 3) (7) 

i.e., in the present case c(z) = H2/(2z 2(n-3)) + higher-order terms. 



864 Ballone and Pastore 

3. C O U L O M B  I N T E R A C T I O N  

In this section we extend the previous analysis to the case in which, in 
addition to an inverse power potential Air n (n > 3), we have the Coulomb 
pair interaction q2/r. Of course the system will be stabilized by a uniform 
background of opposite charge. 

Equation (1) can be rewritten as 

log[1 + h(z)] = -~q~o(z) + Pb f dr' h(z') c~(Ir - r'[) (8) 

where ~0(z) is the electrostatic potential due to the total charge and c~(r)= 
cb(r) + [3q2/r. 

For r ~ o% c~( r )~  -[3A/r" and the difference from the previous case 
in in the ~o(z) term. 

The Poisson equation gives 

~o(z)=4rrqp b ( z - z ' ) h ( z ' ) d z '  (9) 

and the same analysis as in Section 2 shows how the consistency relation 
(5) is modified by the presence of the Coulomb interaction 

whence 

4 7 z q p b H 1  2rc/3APb 1 (z_~l_3) 
(rn -- 1)(rn -- 2) z m-2 = (n -- 2)(n -- 3) z "-~ ~- o 

rn = n - 1 and 
1/~A 
2 q  

(10) 

Therefore, the presence of the long-range Coulomb interaction speeds 
up the decay of h(z) the physical reason being in the lowering of the free 
energy cost of a slower behavior. 

As particular case, if the non-Coulombic part of the potential goes to 
zero faster than any inverse power [a fortiori if it is zero as in the case of 
the one-component classical plasma (OCP)],  then relation (8) shows that 
h(z) must decay faster than any inverse power. Hence in the case of the 
OCP we get a result which is consistent with that from the gradient 
expansion. ~6) 

It is easy to show that the gradient expansion result may be derived 
from the HNC equation by locally expanding h(z) in a Taylor series(7): the 
result is meaningful only as long c~(r) is a short-range function. 

The result (6) of the previous section for the wall-particle direct 
correlation function gives c(z) = [-[2/ (222(n-  1)) + higher-order terms. 
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4. CONCLUSIONS 

We have found that if the interparticle potential goes as Air  ~ for large 
r, h(z) decays as H/z  n-3 with H proportional to the isothermal com- 
pressibility of the bulk. If also the Coulomb potential is present then 
h ( z ) ~ H / z  ~- 1. In the case of OCP h(z) must go to zero at least exponen- 
tially. 

Our analysis of the asymptotic one-particle correlation functions is 
exact in the HNC approximation. Exact information on the behavior of the 
corrections to the HNC equation is lacking but it seems reasonable that, in 
analogy with the known evidence in the homogeneous situation, the 
correcting terms will decay faster than h(z) not affecting the leading 

~asymptotic behavior of the density profile. A similar statement on the 
wall-particle direct correlation function requires a stronger assumption on 
the decaying rate of these unknown corrections. 

Although our results are derived for a monocomponent fluid confined 
by a hard wall, the functional form of the asymptotic density profile does 
not depend on the exact wall-particle interaction provided it is sufficiently 
short range, and hence the result should be valid also for soft walls. 

Returning in conclusion to the comparison with the gradient expan- 
sion, we note that it is not expected to work very well in problems with a 
hard wall but it should be suitable in the asymptotic region of the density 
profile. ~8) In the case of the OCP the two theories give the same result. It 
turns out that the gradient expansion gives an exponential decay for any 
interparticle potential but we expect the HNC result to be more reliable 
because it takes into account the nonlocal effects of correlations. 
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